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Abstract
Theoretical work based on the Freedericksz transition in a wedge of smectic
C liquid crystal is presented. Continuum theory is employed in order to
mathematically model the two-way interaction between the anisotropic fluid
and an applied electric field. Asymptotic methods are used to obtain concise and
informative explicit solutions for limiting regimes where (a) the applied voltage
is just above threshold, and (b) a high voltage is applied. As is anticipated, in
the case of a small dielectric anisotropy, the solution reduces to that obtained
when the two-way interaction is neglected. Nevertheless, at voltages close
to threshold, this interaction can have a significant effect upon the director
profile. Realistic material, geometry and field parameters are adopted in order
to display these solutions. By comparing them with those obtained using a
numerical method, a high degree of accuracy can be found within the above
regimes.

PACS numbers: 61.30.−v, 61.30.Dk

1. Introduction

Liquid crystals are anisotropic fluids which often consist of rod-like molecules. The unit
vector n, commonly called the director, indicates the average alignment of the molecular axes
and it is usually sufficient for a description of what are referred to as nematic liquid crystals in
the isothermal state. When applying an electric or magnetic field to a sample of liquid crystal
the director will often reorient in order to align with the field. Depending on the sign of the
dielectric or magnetic anisotropy, the director will either try to align parallel or perpendicular
to the field. For the special case when the dielectric or magnetic anisotropy is positive and the
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Figure 1. (a) The local alignment of the director, represented by short bold lines, arranged in
equidistant layers of SmC liquid crystal. The director makes a constant tilt angle θ with respect
to the smectic layer normal a. (b) The geometrical description of SmC. The director n can rotate
around the surface of a fictitious cone as indicated. The vector c is the unit orthogonal projection
of n onto the smectic planes and b is defined by b = a × c. The orientation of n can be deduced
from the orientation angle φ, defined relative to some fixed axis, for the vector c within the smectic
planes as shown.

director is initially perpendicular to the field, it is found that alignment will only start to occur
once a certain threshold field (the Freedericksz threshold) is reached (a similar scenario occurs
when the dielectric or magnetic anisotropy is negative and the director is initially aligned
parallel to the field). The theory behind this phenomenon can be found in the texts by de
Gennes and Prost [1] or Stewart [2]. Smectic C (SmC) liquid crystals consist of parallel layers
of molecules where the director is tilted by an angle θ , called the smectic tilt or cone angle,
relative to the local layer normal a and is forced to lie on the surface of a fictitious cone as
shown in figure 1 [1, 2]. It proves mathematically convenient to introduce the vector c as
the unit orthogonal projection of n onto the smectic planes and define the vector b = a × c.
The orientation of n can be deduced from the orientation angle φ for the vector c within the
smectic planes as shown in figure 1(b). Recent work in the literature has focused on various
feasible SmC geometries. Rapini [3], in the context of the continuum theory developed by
the Orsay Group [4], investigated Freedericksz transitions in planar configurations. The later
theory proposed by Leslie et al [5, 6] then paved the way for further research into various
geometries, as has been investigated by, among others, Carlsson et al [7], Atkin and Stewart
[8, 9, 10], Kedney and Stewart [11], Barratt and Duffy [12] and Kidd et al [13]. Related work
on the Freedericksz transition in planar SmC samples has also been carried out by Pelzl et al
[14]. The developments described in this present paper are particularly motivated by the
earlier results for Freedericksz transitions in a wedge of SmC [7, 9, 10] and it is the aim here
to extend these analyses in order to incorporate more realistic electric field phenomena.

It is frequently assumed that an electric field is not influenced by the liquid crystal during
the Freedericksz transition and that it is uniform over the sample. However, it is known that
such an approximation to the field does not generally reflect the physical situation since the
field and the liquid crystal interact with each other. Deuling [15], and later Welford and
Sambles [16], looked at this problem in a planar nematic liquid crystal cell and found that
significant effects on the distortion configuration occurred when the field is not assumed to
be uniformly distributed across the sample. It is the intention here to include the electric field
interaction with the liquid crystal in order to better model the Freedericksz effect in a wedge
of SmC liquid crystal.

The current authors have shown previously [17] that it is possible to obtain an accurate
description of the static behaviour in such a sample by solving a complex system of integral
equations. Unfortunately, this complexity obscures the problem slightly, making it difficult
to pick out the important governing parameters: it also forces the use of elaborate numerical
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Figure 2. (a) The wedge geometry for SmC in the usual r, α and z cylindrical polar coordinate
system. The boundary plates are located at α = 0 and α = β and an electric field is applied
across the plates. The cylindrically aligned SmC layers are arranged as shown in the region where
0 < r0 � r � r1 and 0 � α � β. (b) A schematic representation of one cylindrical layer in the
wedge. The fixed orientation of the director on the boundaries is denoted by nb and the orientation
angle φ of the vector c is defined in the local zα-plane as shown.

methods. It is therefore desirable, in these circumstances, to use some asymptotic methods
in order to look at different cases where certain terms can be neglected in order to gain
some insight into the key influential mathematical or physical parameters. Schiller [18] has
used a perturbation method in order to derive simpler approximate analytical solutions for a
twisted nematic cell when the deformation is small and, more recently, Self et al [19] utilized
asymptotic expansions to analytically investigate and extend the previous work of Deuling
[15] for a planar nematic cell. Guided by the latter, we obtain analogous approximations
for the Freedericksz transition in the SmC wedge, thereby extending the work of Carlsson
et al [7] and Atkin and Stewart [9], yet simplifying the complex nature of a previous solution
[17]. Further information on the asymptotic methods used below can be found in the book by
Van Dyke [20].

The basic model of the wedge geometry for SmC and the governing differential
equations are introduced in section 2 where the key non-dimensionalized equations are given
by (2.18), (2.19) and (2.21). These equations form the basis for subsequent sections. The
effect of small dielectric anisotropy is discussed in section 3 before going on to examine the
low and high voltage cases (relative to the critical threshold voltage) in sections 4 and 5,
respectively. The paper ends with a short discussion in section 6.

2. Model and governing equations

The wedge geometry for SmC liquid crystals [7, 9, 10, 21, 22] is known to be a resourceful
research vehicle for determining properties of liquid crystals that are relevant to display and
other technologies. It consists of placing a liquid crystal material between two angled plates
across which a voltage is applied so as to obtain an azimuthal field. This configuration is
shown in figure 2 where β denotes the wedge angle, nb is the fixed director orientation at the
boundaries, E is the electric field and r, α and z define the usual polar coordinate system.

When the applied field exceeds the Freedericksz threshold the director n will rotate around
a fictitious cone. Figure 2(b) depicts a schematic view of one typical cylindrical layer in the
wedge and shows the possible orientation of c as its orientation angle φ, as depicted in the
figure, varies with α. We shall suppose that φ is a function of α only, i.e., φ = φ(α), since, by
the geometry of the problem [7], it can be assumed that there is no dependence upon z or r.
Following Carlsson et al [7], strong anchoring will be imposed on the director at the boundary
plates so that

nb = r̂ cos θ + ẑ sin θ, at α = 0, β, (2.1)
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are the fixed director positions on the boundary plates. Note that if no field is present and strong
anchoring given by (2.1) holds then there will be an unperturbed configuration corresponding
to the constant solution n ≡ nb.

The vectors a and c are subject to the constraints

a · a = 1, c · c = 1, a · c = 0. (2.2)

Oseen [23] observed that ∇ × a = 0, for smectic materials and this constraint has since been
widely employed, especially by the Orsay Group [4] for planar layers of SmC. This constraint
is valid for any lamellar-type system free from any defects or singularities and it will be
supposed here also. Under the conditions (2.2) and the Oseen constraint it is now possible to
write the following ansatz for a, b and c [7]:

a = r̂, b = −α̂ cos φ + ẑ sin φ, c = α̂ sin φ + ẑ cos φ. (2.3)

It is evident from the geometry of figure 2(b) that the strong anchoring conditions (2.1) lead
to the boundary conditions

φ(0) = φ(β) = 0, (2.4)

on φ and that the director can be described as [7]

n = a cos θ + c sin θ = r̂ cos θ + α̂ sin θ sin φ + ẑ sin θ cos φ. (2.5)

Note that when a and θ are fixed, as they will be here, knowledge of φ gives a complete
description for the orientation of director n via (2.5).

In order to perform an asymptotic analysis, differential equations governing the director
orientation and field behaviour must be obtained by minimizing the total energy involved in
the liquid crystal sample depicted in figure 2(a). It is known that the SmC elastic energy
density can be written as [6]

wC = 1
2A12(b · ∇ × c)2 + 1

2A21(c · ∇ × b)2 + A11(b · ∇ × c)(c · ∇ × b) + 1
2B1(∇ · b)2

+ 1
2B2(∇ · c)2 + 1

2B3
[

1
2 (b · ∇ × b + c · ∇ × c)

]2

+ B13(∇ · b)
[

1
2 (b · ∇ × b + c · ∇ × c)

]
+ C1(∇ · c)(b · ∇ × c) + C2(∇ · c)(c · ∇ × b), (2.6)

where Ai, Bi and Ci represent elastic constants used by the Orsay Group [4] with the exception
that A11 = − 1

2A
Orsay
11 and C1 = −C

Orsay
1 . By substituting equations (2.3) into wC , it is found

that the total elastic energy in a wedge of SmC liquid crystal occupying a region of unit height
in z with 0 < r0 � r � r1 and 0 � α � β is given by

WC =
∫ ∫ ∫

V

wCr dr dα dz

= 1

2
ln

(
r1

r0

) ∫ β

0

[
−A11 + [(A12 + A11) sin4 φ + (A21 + A11) cos4 φ]

+

(
dφ

dα

)2

[B1 sin2 φ + B2 cos2 φ] + 2
dφ

dα
[C1 sin2 φ − C2 cos2 φ] cos φ

]
dα. (2.7)

The application of an electric field to a sample of SmC material induces an electric
displacement D which can be directly related to the director n via [2, p 27]

D = ε0ε⊥E + ε0εa(n · E)n, εa = ε‖ − ε⊥, (2.8)

where the constant ε0 is the permittivity of free space, ε‖ and ε⊥ denote the relative dielectric
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permittivities of the liquid crystal parallel and perpendicular to the director, respectively, and εa

represents the unitless dielectric anisotropy of the SmC material. It should be noted, however,
that this expression is only valid when the biaxiality of the material is small. Jones and Raynes
[24] have made measurements of the biaxial permittivities for several SmC materials and it
was seen that this assumption is often valid close to the SmC→SmA transition temperature.
The electric energy density is given by [2, p 28]

welec = − 1
2 D · E = − 1

2ε0ε⊥E2 − 1
2ε0εa(n · E)2, (2.9)

where E = |E|. From standard electrostatic theory it is known that the electric field can be
related to the electric potential � via the relation E = −∇� [25, p 47] where, to obtain the
correct form for E, it is expected that � = �(α) so that

E = −1

r

d�

dα
α̂. (2.10)

Inserting equations (2.5) and (2.10) into the electric energy density (2.9) then gives

welec = − ε0

2r2

(
d�

dα

)2

[ε⊥ + εa sin2 θ sin2 φ]. (2.11)

The total energy density of the system will be given by w = wC + welec so that, by (2.7) and
(2.11), the total energy W = ∫

V
w dV per unit depth in the z-direction is

W = 1

2
ln

(
r1

r0

)∫ β

0

[
−A11 + [(A12 + A11) sin4 φ + (A21 + A11) cos4 φ]

+

(
dφ

dα

)2

[B1 sin2 φ + B2 cos2 φ] + 2
dφ

dα
[C1 sin2 φ − C2 cos2 φ] cos φ

− ε0

(
d�

dα

)2

[ε⊥ + εa sin2 θ sin2 φ]

]
dα. (2.12)

The next step is to minimize the total energy in order to obtain the governing differential
equations. In this case, since the above energy integral involves two different functions,
namely φ and �, two Euler–Lagrange equations must be solved simultaneously [26, p 198]:

∂w̄

∂φ
− d

dα

(
∂w̄

∂φ′

)
= 0,

∂w̄

∂�
− d

dα

(
∂w̄

∂� ′

)
= 0, (2.13)

where w̄ is the integrand appearing in (2.12) and a prime denotes differentiation with respect
to α. Straightforward calculations then lead to the two governing equations

2 sin φ cos φ[(A12 + A11) sin2 φ − (A21 + A11) cos2 φ] −
(

dφ

dα

)2

(B1 − B2) sin φ cos φ

− d2φ

dα2
[B1 sin2 φ + B2 cos2 φ] −

(
d�

dα

)2

ε0εa sin2 θ sin φ cos φ = 0, (2.14)

and

d

dα

[
d�

dα
(ε⊥ + εa sin2 θ sin2 φ)

]
= 0. (2.15)

Of course, in addition to solving these two differential equations, it is essential to ensure that
Maxwell’s equations (∇ · D = 0,∇ × E = 0, [25, p 495]) are satisfied. That which involves
the curl of the electric field is easily verified and, by making use of equations (2.5), (2.8)
and (2.10), it can be shown that the condition ∇ · D = 0 reduces to the same differential



11366 A A T Smith and I W Stewart

equation given by (2.15). Thus we need only consider the coupled equations (2.14) and (2.15)
as being sufficient for the problem to be discussed here.

In addition to the strong anchoring condition (2.4) for the angle φ, the applied voltage is
taken to be zero volts on one bounding plate and Vapp on the other. This leads to the boundary
conditions

�(0) = 0 and �(β) = Vapp (2.16)

on the electric potential �. Finally, in order to non-dimensionalize the governing equations,
the scaled variables

ᾱ = α

β
, �̄ = �

Vapp
(2.17)

are introduced allowing (2.14) and (2.15) to be written in the forms

sin φ cos φ[µ1 cos2 φ + µ2 sin2 φ] +

(
dφ

dᾱ

)2

σ sin φ cos φ

+
d2φ

dᾱ2
[σ sin2 φ + 1] +

(
d�̄

dᾱ

)2

U 2 sin φ cos φ = 0, (2.18)

and
d

dᾱ

[
d�̄

dᾱ
(1 + η sin2 φ)

]
= 0, (2.19)

where the dimensionless parameters are given by

µ1 = 2β2 (A21 + A11)

B2
, µ2 = −2β2 (A12 + A11)

B2
, σ = B1

B2
− 1,

U 2 = ε0εaV
2

app sin2 θ

B2
, η =

(
ε‖
ε⊥

− 1

)
sin2 θ.

(2.20)

In addition to the main equations, the boundary conditions (2.4) and (2.16) must also be
suitably scaled to give

φ(0) = φ(1) = 0, �̄(0) = 0, �̄(1) = 1. (2.21)

Equations (2.18), (2.19) and (2.21) will form the basis for our investigation.

3. Small anisotropy approximation

It is known from earlier work by Carlsson et al [7] and Atkin and Stewart [9] that there is
no distortion of the director until an applied voltage reaches a critical threshold. What is of
interest here, however, is the behaviour of both the director orientation and the electric field
once beyond this threshold. In this section, asymptotic series are employed to simplify the
problem when the dielectric anisotropy is small. It will be shown that, when this is the case,
the relevant solutions reduce to those obtained in [9] indicating that, for a small dielectric
anisotropy η, the two-way coupling between liquid crystal and field can be neglected. We can
suppose that the dielectric anisotropy η is small and insert expansions of the form

φ(ᾱ) = φ0(ᾱ) + ηφ1(ᾱ) + η2φ2(ᾱ) + η3φ3(ᾱ) + · · · , (3.1)

�̄(ᾱ) = �̄0(ᾱ) + η�̄1(ᾱ) + η2�̄2(ᾱ) + η3�̄3(ᾱ) + · · · , (3.2)

into the governing differential equations (2.18) and (2.19). Beyond the term of order η0 the
resulting terms become cumbersome and so only the first term in each of the expansions will
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be sought. This procedure demonstrates that

�̄ ′′
0 = 0, (3.3)

and

µ1 sin φ0 cos3 φ0 + µ2 sin3 φ0 cos φ0 + σ sin φ0 cos φ0(φ
′
0)

2

+ σ sin2 φ0φ
′′
0 + φ′′

0 + U 2 sin φ0 cos φ0(�̄
′
0)

2 = 0, (3.4)

where a prime now denotes differentiation with respect to ᾱ. By the boundary conditions
in (2.21), it is seen that the first term in the scaled potential is given by

�̄0 = ᾱ, (3.5)

which means, in terms of the original variables α and �, that

�0 = α

β
Vapp, (3.6)

which leads to a uniform electric field, and, by (2.10), the electric field magnitude is given
by [7]

E = −Vapp

rβ
. (3.7)

The differential equation (3.4) can be multiplied throughout by 2φ′
0 and then integrated to

obtain

− 1
2µ1 cos4 φ0 + 1

2µ2 sin4 φ0 + (1 + σ sin2 φ0)(φ
′
0)

2 + U 2 sin2 φ0 = C, (3.8)

where C is a constant of integration. Now imposing the conditions [9]

φ0
(

1
2

) = φm, φ′
0

(
1
2

) = 0, (3.9)

in order to obtain the constant C, it can be shown, via some rearrangement and integration,
that φ0(ᾱ) is given implicitly by

ᾱ =
∫ φ0

0

[
2(1 + σ sin2 u)

µ1(cos4 u − cos4 φm) + µ2(sin4 φm − sin4 u) + 2U 2(sin2 φm − sin2 u)

] 1
2

du.

(3.10)

Introducing the substitution

sin u = sin φm sin v, (3.11)

and setting

ζ(ᾱ) = sin−1

(
sin φ0(ᾱ)

sin φm

)
, (3.12)

then gives, after some cancellation,

ᾱ =
∫ ζ

0

[
2(1 + σ sin2 φm sin2 v)

[2µ1 + 2U 2 + (µ2 − µ1) sin2 φm(1 + sin2 v)](1 − sin2 φm sin2 v)

] 1
2

dv, (3.13)

which upon use of the conditions (3.9) results in an implicit equation for the maximum phase
angle φm:

1

2
=

∫ π
2

0

[
2(1 + σ sin2 φm sin2 v)

[2µ1 + 2U 2 + (µ2 − µ1) sin2 φm(1 + sin2 v)](1 − sin2 φm sin2 v)

] 1
2

dv. (3.14)

We can suppose that Vapp → Vc as we let φm → 0 on the right-hand side of (3.14) to recover
the well-known critical Freedericksz threshold Vc for the onset of the Freedericksz transition
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when the field is uniform, given by [9, 17]

εaε0V
2
c sin2 θ = π2B2 − 2β2(A21 + A11), (3.15)

and record that this implies that the critical electric field magnitude is given by

Ec = − 1

rβ
Vc. (3.16)

Returning to equation (3.10), it can finally be shown that, by converting back to the
original variable α and reintroducing the material parameters (2.20), we obtain the same
solution as that found by Atkin and Stewart [9, equation (36)]. This should be expected for
the first term of the expansion in φ, since the first term in the potential series gave rise to
a uniform field which was the situation considered in [9]. The advantage of looking at the
problem in terms of an asymptotic series, however, is that it gives justification for neglecting
the nonlinear coupling between liquid crystal and field when the dielectric anisotropy is small.

4. Low field regime

Our next investigation looks at when the applied voltage is just above this critical threshold.
In this case we introduce a small perturbation δ through the relation [19]

U = ρ(1 − ρδ2)−1, where ρ2 = B−1
2 [π2B2 − 2β2(A21 + A11)]. (4.1)

This particular way of expressing the increase in Vapp above Vc (defined by in (3.15)) allows
the series expansions that appear in the calculations below to be more tractable in terms of δ.
It is seen that δ = 0 corresponds to U = ρ, which, by (2.20) in turn corresponds to Vapp = Vc;
a small increase in δ corresponds to a small increase in the voltage above Vc.

It is reasonable to assume that φ and δ are small enough so that the following
approximations are valid:

sin2 φ ≈ φ2 − 1
3φ4, cos2 φ ≈ 1 − φ2 + 1

3φ4,

sin φ cos φ ≈ φ − 2
3φ3, (1 − ρδ2)−2 ≈ 1 + 2ρδ2 + 3ρ2δ4.

(4.2)

Before introducing general series expressions it is worth realizing that as δ → 0 then it
must be the case that φ → 0 also. This means that any series for the director rotation cannot
have a term that is independent of δ. Therefore we employ series solutions for the phase angle
and normalized potential of the form

φ(ᾱ) = δφ1(ᾱ) + δ2φ2(ᾱ) + δ3φ3(ᾱ) + δ4φ4(ᾱ) + · · · (4.3)

�̄(ᾱ) = �̄0(ᾱ) + δ�̄1(ᾱ) + δ2�̄2(ᾱ) + δ3�̄3(ᾱ) + δ4�̄4(ᾱ) + · · · . (4.4)

By inserting the above series expansions into the governing equations (2.18) and (2.19) and
making use of the approximations in (4.2) it is possible to show that, up to fourth order in δ,
we have

δ
[
µ1φ1 + φ′′

1 + ρ2φ1�̄
′2
0

]
+ δ2

[
µ1φ2 + φ′′

2 + 2ρ2φ1�̄
′
0�̄

′
1 + ρ2φ2�̄

′2
0

]
+ δ3[µ1φ3 +

(
µ2 − 5

3µ1
)
φ3

1 + σφ1φ
′2
1 + σφ2

1φ
′′
1 + φ′′

3 + ρ2φ1�̄
′2
1

+ 2ρ2φ1�̄
′
0�̄

′
2 + 2ρ2φ2�̄

′
0�̄

′
1 + ρ2φ3�̄

′2
0 − 2

3ρ2φ3
1�̄

′2
0 + 2ρ3φ1�̄

′2
0

]
+ δ4

[
µ1φ4 + (3µ2 − 5µ1)φ

2
1φ2 + 2σφ1φ

′
1φ

′
2 + σφ2φ

′2
1 + σφ2

1φ
′′
2

+ 2σφ1φ2φ
′′
1 + φ′′

4 + 2ρ2φ1�̄
′
1�̄

′
2 + 2ρ2φ1�̄

′
0�̄

′
3 + ρ2φ2�̄

′2
1 + 2ρ2φ2�̄

′
0�̄

′
2

+ 2ρ2φ3�̄
′
0�̄

′
1 + ρ2φ4�̄

′2
0 − 4

3ρ2φ3
1�̄

′
0�̄

′
1 − 2ρ2φ2

1φ2�̄
′2
0 + 4ρ3φ1�̄

′
0�̄

′
1

+ 2ρ3φ2�̄
′2
0

] = 0, (4.5)
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and

�̄ ′′
0 + δ�̄ ′′

1 + δ2[ηφ2
1�̄

′
0 + �̄ ′

2

]′
+ δ3[2ηφ1φ2�̄

′
0 + ηφ2

1�̄
′
1 + �̄ ′

3

]′

+ δ4
[
2ηφ1φ3�̄

′
0 + ηφ2

2�̄
′
0 − 1

3ηφ4
1�̄

′
0 + 2ηφ1φ2�̄

′
1 + ηφ2

1�̄
′
2 + �̄ ′

4

]′ = 0. (4.6)

Similarly, the boundary conditions (2.21) become

φ1(0) = φ2(0) = φ3(0) = φ4(0) = 0,

φ1(1) = φ2(1) = φ3(1) = φ4(1) = 0,

�̄0(0) = �̄1(0) = �̄2(0) = �̄3(0) = �̄4(0) = 0,

�̄0(1) = 1,

�̄1(1) = �̄2(1) = �̄3(1) = �̄4(1) = 0.

(4.7)

We can now systematically solve equations (4.5) and (4.6) (by setting the coefficients
of each order of δ to zero, to obtain simpler differential equations) subject to the boundary
conditions (4.7) in order to obtain the functions φi and �̄i . Starting with the coefficient of δ0

in equation (4.6) and then subsequently using the coefficients of δ in (4.5) and (4.6), and δ2

in (4.5) and (4.6), leads to the results:

�̄0 = ᾱ, �̄1 = 0, �̄2 = c2
1η

2π
sin(πᾱ) cos(πᾱ), (4.8)

φ1 = c1 sin(πᾱ), φ2 = c2 sin(πᾱ), (4.9)

where the constants c1 and c2 are to be determined. It is worth noting from equations (2.20)
and (4.1) that µ1 + ρ2 = π2 when deriving these equations.

The procedure to obtain φ3 and �̄3 remains the same as above; however, more detailed
manipulation of the associated differential equations is needed. The coefficient of δ3 in (4.5)
when set to zero gives rise to the differential equation

φ′′
3 + π2φ3 + ξ1c

3
1 sin3(πᾱ) +

(
ξ2c

3
1 + ξ3c1

)
sin(πᾱ) = 0, (4.10)

where we have set

ξ1 = µ2 − µ1 − 2
3π2 − 2σπ2 − 2ρ2η, ξ2 = σπ2 + ρ2η, ξ3 = 2ρ3. (4.11)

Solving (4.10) subject to the conditions in (4.7) then gives the result (assuming that c1 �= 0)

c2
1 = 8ρ3

3 (µ1 − µ2) + 2π2(1 + σ) + 2ρ2η
≡ λ, (4.12)

which leads to the solutions

φ3 = c3 sin(πᾱ) ± ξ1λ
3
2

32π2
sin(3πᾱ), (4.13)

with c3 representing another integration constant. From the coefficient of δ3 in (4.6) it is
straightforward to find that

�̄3 = ±c2ηλ
1
2

π
sin(πᾱ) cos(πᾱ). (4.14)

Finally, the coefficient of δ4 in (4.5) set equal to zero gives an equation for φ4, namely,

φ′′
4 + π2φ4 + ξ4c2 sin3(πᾱ) + ξ5c2 sin(πᾱ) = 0, (4.15)

where

ξ4 = (3µ2 − 3µ1 − 2π2 − 6σπ2 − 6ρ2η)λ, ξ5 = 3σπ2λ + 2ρ3 + 3ρ2ηλ. (4.16)



11370 A A T Smith and I W Stewart

Solving this equation leads to the conclusion that c2 = 0 and that φ4 must be given by

φ4 = c4 sin(πᾱ), (4.17)

with c4 being a constant of integration.
This now allows us to write down the asymptotic expansions up to at least order δ2 for

φ(ᾱ) and �̄(ᾱ). Without loss of generality, we shall select the plus sign in (4.12) to find that

φ(ᾱ) = δ
√

λ sin(πᾱ) + O(δ3), (4.18)

�̄(ᾱ) = ᾱ + δ2 ηλ

2π
sin(πᾱ) cos(πᾱ) + O(δ4). (4.19)

(The solutions with the minus signs correspond to a rotation of the director in the opposite
direction.) Finally, we transform the above two equations using (2.17) in order to obtain

φ(α) = δ
√

λ sin

(
πα

β

)
+ O(δ3), (4.20)

and

�(α) =
[

α

β
+ δ2 ηλ

2π
sin

(
πα

β

)
cos

(
πα

β

)
+ O(δ4)

]
Vapp. (4.21)

Although equation (4.21) determines the electric potential throughout the wedge cell, it
is of more use to revert to an expression for the electric field so that a comparison of results
can be made with the full solution found in Smith and Stewart [17]. Using equation (2.10) it
is straightforward to show that the electric field is given by

E = −α̂
Vapp

rβ

[
1 + δ2 ηλ

2
cos

(
2πα

β

)
+ O(δ4)

]
. (4.22)

Normalizing with respect to the critical field in (3.16) allows the r-dependence to be eliminated,
giving

E

Ec

= Vapp

Vc

[
1 + δ2 ηλ

2
cos

(
2πα

β

)
+ O(δ4)

]
, (4.23)

where E = |E|. In order to plot solutions it is particularly useful to be able to select a value for
the voltage ratio Vapp/Vc rather than a value for δ, and so by making use of the critical voltage
(3.15), the non-dimensional parameter U in (2.20)4 and the expression (4.1)1, it is convenient
to note that

δ2 = 1

ρ

(
1 − Vc

Vapp

)
, (4.24)

where ρ is defined in equation (4.1)2. Figures 3–5 show how the director and field vary across
the wedge for a variety of voltage ratios, permittivity values and elastic constants. In each
of these figures the dashed curves are the asymptotic solutions ((4.20) or (4.23)) and, for
comparison, the numerical solutions obtained using the method outlined by Smith and Stewart
[17] are given as solid curves. For realistic parameter values we combined the experimental
results for A11 + A21 obtained from a wedge experiment by Findon and Gleeson [22] with
other data available from [27–29]. Unless otherwise noted in the figure captions, the data used
are

β = 2 × 10−3 rad, B1 = 7.02 × 10−12 N, B2 = 3.51 × 10−12 N,

ε⊥ = 2.91, ε‖ = 3.89, θ = 2π

15
rad,

A11 = −1.44 × 10−4 N, A12 = 1.711 × 10−4 N, A21 = 1.212 × 10−4 N.

(4.25)
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(a) (b)

Figure 3. (a) Director behaviour and (b) field distortion across the SmC wedge for different
applied voltage ratios, with the dashed and solid curves representing the asymptotic and numerical
solutions, respectively. The parameter values are given by (4.25).

(a) (b)

Figure 4. (a) Director behaviour and (b) field distortion across the SmC wedge for different
values of ε‖ when Vapp/Vc = 1.01, with the dashed and solid curves representing the asymptotic
and numerical solutions, respectively. The parameter values are given by (4.25) except that here
B1 = B2 = 5 × 10−12 N.

From figure 3 it is clear to see, for the data used, that the asymptotic expansions provide
accurate approximations to the solutions when the voltage is just slightly above threshold. It
is only when the voltage ratio becomes greater than about 1.1 that the asymptotic solutions
significantly diverge from the full numerical solutions. As can be seen from figures 4 and 5,
varying any of the material parameters, ε‖, B1 or B2, does not appear to have much effect on
the accuracy of the asymptotic solutions, as is expected.

5. High field regime

In the previous section, asymptotic solutions were obtained which described the director
and field behaviour when a voltage just larger than that at threshold was applied to the SmC
wedge. In this section our attention shifts to the case of a high voltage being applied to the cell.
Although assumptions are made regarding the magnitudes of some of the non-dimensionalized
material parameters, they are not seen as being too restrictive when applying realistic data to
the final asymptotic solutions. Due to the nature of the problem it is convenient to construct



11372 A A T Smith and I W Stewart

(a) (b)

Figure 5. (a) Director behaviour and (b) field distortion across the SmC wedge for different
values of B1 and B2, with the dashed and solid curves representing the asymptotic and numerical
solutions, respectively. In this case ε‖ = 6 and Vapp/Vc = 1.01 with the remaining parameters
given by (4.25).

two separate types of approximate solutions in sections 5.1 and 5.2 that will be matched
together in section 5.3. In section 5.1 outer solutions are obtained which demonstrate the
behaviour of the director and field at points far from the boundaries while inner solutions are
determined in section 5.2 which dictate the behaviour near the boundaries.

5.1. The outer solutions

In this case we set

U = 1

ε
, σ = εσ̄ , η = εη̄, σ̄ , η̄ = O(1), (5.1)

where ε is some small positive parameter (ε 
 1). Inserting the expansions

φ(ᾱ) = φ0(ᾱ) + εφ1(ᾱ) + ε2φ2(ᾱ) + ε3φ3(ᾱ) + · · · , (5.2)

�̄(ᾱ) = �̄0(ᾱ) + ε�̄1(ᾱ) + ε2�̄2(ᾱ) + ε3�̄3(ᾱ) + · · · , (5.3)

into the main governing equations (2.18) and (2.19) and then expanding up to order ε2 shows
that we require

sin φ0 cos φ0�̄
2
0ᾱ + ε

[
2 sin φ0 cos φ0�̄0ᾱ�̄1ᾱ − φ1 sin2 φ0�̄

2
0ᾱ + φ1 cos2 φ0�̄

2
0ᾱ

]
+ ε2[sin φ0 cos φ0

(
µ1 cos2 φ0 + µ2 sin2 φ0

)
+ φ0ᾱᾱ + sin φ0 cos φ0�̄

2
1ᾱ

+ 2 sin φ0 cos φ0�̄0ᾱ�̄2ᾱ − 2φ2
1 sin φ0 cos φ0�̄

2
0ᾱ − 2φ1 sin2 φ0�̄0ᾱ�̄1ᾱ

−φ2 sin2 φ0�̄
2
0ᾱ + 2φ1 cos2 φ0�̄0ᾱ�̄1ᾱ + φ2 cos2 φ0�̄

2
0ᾱ

] = 0, (5.4)

and

�̄0ᾱᾱ + ε[η̄ sin2 φ0�̄0ᾱ + �̄1ᾱ]ᾱ + ε2[2η̄φ1 sin φ0 cos φ0�̄0ᾱ + η̄ sin2 φ0�̄1ᾱ + �̄2ᾱ]ᾱ = 0,

(5.5)

where the trigonometric functions have been expanded via the approximations

sin φ ≈ (
1 − 1

2ε2φ2
1

)
sin φ0 + (εφ1 + ε2φ2) cos φ0, (5.6)

cos φ ≈ (
1 − 1

2ε2φ2
1

)
cos φ0 − (εφ1 + ε2φ2) sin φ0. (5.7)
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It should be noted that in these equations the subscripts that involve ᾱ indicate differentiation.
This notation has been introduced instead of the primes from section 4 in order to avoid
confusion with the different derivatives that will appear when considering the inner solutions
below.

In order to obtain the outer solution, each coefficient of the powers of ε in (5.4) and (5.5)
must be set equal to zero and solved sequentially for the various φi and �̄i . Since this situation
deals with the outer solution it is not possible to use the boundary conditions. To achieve
a full solution then requires the introduction of some other condition. Due to the symmetry
of the wedge around α = β

2

(
ᾱ = 1

2

)
and the reasonable expectation that the potential is a

monotonically increasing function of distance, it is natural to suppose that the potential must
reach half of the applied voltage along the line α = β

2 . This condition can therefore be stated
as

�̄0
(

1
2

) = 1
2 , �̄1

(
1
2

) = �̄2
(

1
2

) = 0. (5.8)

First, the coefficient of ε0 in equation (5.5) set to zero under the conditions stated in (5.8)
then gives

�̄0 = (1 − 2b0) ᾱ + b0, (5.9)

where b0 is a constant of integration yet to be determined. Next, looking at the coefficient
of ε0 in (5.4) shows that φ0 must be a half integer multiple of π ; however, we choose the
physically most relevant one, namely φ0 = π

2 . Similarly, from the coefficients of ε and ε2 in
equations (5.4) and (5.5), and applying the conditions in (5.8), it can be shown that

�̄1 = −2b1ᾱ + b1, �̄2 = −2b2ᾱ + b2, (5.10)

φ1 = 0, φ2 = 0, (5.11)

where b1 and b2 are constants of integration. Combining all of these results gives the full outer
solutions up to at least second order in ε as

φ = π

2
, (5.12)

and

�̄ = (1 − 2b0) ᾱ + b0 + ε (−2b1ᾱ + b1) + ε2 (−2b2ᾱ + b2) . (5.13)

5.2. The inner solutions

To consider the inner ‘boundary layer’ solution it is first essential to rescale ᾱ so that

ᾱ = εα̂, α̂ = O(1), (5.14)

where ε is the small parameter introduced previously. Changing to this new variable, in
addition to substituting the parameters (5.1) into the governing equations (2.18) and (2.19),
then leads, after introducing expansions of the form (5.2) and (5.3) (with ᾱ replaced with
α̂) and straightforward manipulation, to the differential equations set out below in (5.15)
and (5.16). In order to obtain sufficient information for a reasonably accurate solution,
equation (2.18) is expanded up to third order in ε whereas equation (2.19) needs to be
expanded only to second order.

sin φ0 cos φ0�̄
2
0α̂ + ε

[
2 sin φ0 cos φ0�̄0α̂�̄1α̂ − φ1 sin2 φ0�̄

2
0α̂ + φ1 cos2 φ0�̄

2
0α̂

]
+ ε2

[
φ0α̂α̂ + 2 sin φ0 cos φ0�̄0α̂�̄2α̂ + sin φ0 cos φ0�̄

2
1α̂ − 2φ2

1 sin φ0 cos φ0�̄
2
0α̂
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− 2φ1 sin2 φ0�̄0α̂�̄1α̂ − φ2 sin2 φ0�̄
2
0α̂ + 2φ1 cos2 φ0�̄0α̂�̄1α̂ + φ2 cos2 φ0�̄

2
0α̂

]
+ ε3

[
σ̄ sin φ0 cos φ0φ

2
0α̂ + σ̄ sin2 φ0φ0α̂α̂ + φ1α̂α̂ + 2 sin φ0 cos φ0�̄0α̂�̄3α̂

+ 2 sin φ0 cos φ0�̄1α̂�̄2α̂ − 4φ2
1 sin φ0 cos φ0�̄0α̂�̄1α̂ − 4φ1φ2 sin φ0 cos φ0�̄

2
0α̂

− 2φ1 sin2 φ0�̄0α̂�̄2α̂ − φ1 sin2 φ0�̄
2
1α̂ − 2φ2 sin2 φ0�̄0α̂�̄1α̂ − φ3 sin2 φ0�̄

2
0α̂

+ 2
3φ3

1 sin2 φ0�̄
2
0α̂ + 2φ1 cos2 φ0�̄0α̂�̄2α̂ + φ1 cos2 φ0�̄

2
1α̂ − 2

3φ3
1 cos2 φ0�̄

2
0α̂

+ 2φ2 cos2 φ0�̄0α̂�̄1α̂ + φ3 cos2 φ0�̄
2
0α̂

] = 0, (5.15)

�̄0α̂α̂ + ε[η̄ sin2 φ0�̄0α̂ + �̄1α̂]α̂ + ε2[2η̄φ1 sin φ0 cos φ0�̄0α̂ + η̄ sin2 φ0�̄1α̂ + �̄2α̂]α̂ = 0.

(5.16)

In the above two equations the following approximations were imposed on the trigonometric
functions:

sin φ ≈ (
1 − 1

2ε2φ2
1 − ε3φ1φ2

)
sin φ0 +

(
εφ1 + ε2φ2 + ε3φ3 − 1

6ε3φ3
1

)
cos φ0, (5.17)

cos φ ≈ (
1 − 1

2ε2φ2
1 − ε3φ1φ2

)
cos φ0 − (

εφ1 + ε2φ2 + ε3φ3 − 1
6ε3φ3

1

)
sin φ0. (5.18)

Although boundary layers exist at both plates that form the wedge, due to symmetry
properties it is only necessary to obtain a solution for one of these regions. From the scaling
chosen in equation (5.14) it is clear that the calculations above will lead to the solution on the
lower boundary where

φ0(0) = φ1(0) = φ2(0) = φ3(0) = 0, �̄0(0) = �̄1(0) = �̄2(0) = 0. (5.19)

Also, as α̂ → ∞ the inner solution must tend towards the outer solution and so

lim
α̂→∞

φ0 = π

2
, lim

α̂→∞
φ1 = lim

α̂→∞
φ2 = lim

α̂→∞
φ3 = 0,

lim
α̂→∞

φ0α̂ = lim
α̂→∞

φ1α̂ = lim
α̂→∞

φ2α̂ = lim
α̂→∞

φ3α̂ = 0.
(5.20)

Once again, setting coefficients of each power of ε in equations (5.15) and (5.16) to zero
allows us to obtain, via the above boundary conditions (5.19) and (5.20), solutions for the
functions φi (α̂) and �̄i (α̂). Starting with the coefficient of ε0 in (5.16) immediately gives

�̄0 = a0α̂, (5.21)

however the coefficient of ε0 in (5.15) forces a0 to be zero, via the boundary conditions (5.19)
and (5.20) and therefore,

�̄0 = 0. (5.22)

From the ε term in (5.16) it is clear that

�̄1 = a1α̂, (5.23)

where a1 is an integration constant to be determined. The term involving ε in (5.15) gives
no information and so attention shifts to the coefficient of ε2 which results in the differential
equation

φ2
0α̂ = a2

1 cos2 φ0 + ā0, (5.24)

where ā0 is a constant of integration. Using condition (5.20) on equation (5.24), along with
standard integration techniques, results in the solution

φ0 = 2 tan−1(exp(a1α̂)) − π

2
. (5.25)
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By using standard trigonometric identities and basic geometrical considerations, the cosine
and sine of φ0 can be written as

sin φ0 = tanh(a1α̂), cos φ0 = sech(a1α̂). (5.26)

Making use of this in the coefficient of ε2 in equation (5.16) allows straightforward integration
to give

�̄2 = a2α̂ − η̄a1α̂ + η̄ tanh(a1α̂), (5.27)

where a2 is another integration constant. Returning to (5.15), the differential equation arising
from the coefficient of ε3 can be rearranged, making use of (5.24) and (5.26)2, in order to
obtain

φ1α̂α̂ + a2
1 cos(2φ0)φ1 = −σ̄ sin φ0 cos φ0φ

2
0α̂ − σ̄ sin2 φ0φ0α̂α̂

− 2a1(a2 − η̄a1) sin φ0 cos φ0 + 2η̄ cos2 φ0φ0α̂α̂ . (5.28)

To solve this differential equation it is imperative to put it into a more convenient and standard
form. To do this we can rewrite the trigonometric functions in terms of exponentials and then
convert to a differential equation involving hyperbolic functions. Elementary calculations
applied to equation (5.25) show that

sin φ0 = exp(a1α̂) − exp(−a1α̂)

exp(a1α̂) + exp(−a1α̂)
, cos φ0 = 2

exp(a1α̂) + exp(−a1α̂)
,

cos(2φ0) = 8 exp(2a1α̂)

(1 + exp(2a1α̂))2
− 1, φ0α̂ = 2a1 exp(a1α̂)

1 + exp(2a1α̂)
,

φ0α̂α̂ = 2a2
1(exp(a1α̂) − exp(3a1α̂))

(1 + exp(2a1α̂))2
.

(5.29)

Inserting these into (5.28) finally leads to

φ1α̂α̂ + a2
1(2 sech2(a1α̂) − 1)φ1 = λ1 sinh(3a1α̂) + λ2 sinh(a1α̂)

4 cosh4(a1α̂)
, (5.30)

where

λ1 = −a1(2a2 − 2η̄a1 − σ̄ a1), λ2 = −a1(7σ̄ a1 + 6η̄a1 + 2a2). (5.31)

By converting (5.30) back into a form involving exponentials it is relatively easy to obtain an
analytical solution using the mathematical package MAPLE. The solution for φ1 is

φ1 = a3(sinh(2a1α̂) + 2a1α̂)

cosh(a1α̂)
+

a4

2 cosh(a1α̂)

−
(
2λ1a1α̂ exp(a1α̂) cosh(a1α̂) + 1

2λ1 exp(2a1α̂) − 1
4λ2 + 3

4λ1
)

2a2
1 exp(a1α̂)(cosh(2a1α̂) + 1)

, (5.32)

with a3 and a4 being integration constants. Finally, by making use of the boundary condition
for φ1 (5.19) and the limit condition (5.20) it is found that

a3 = 0, a4 = 3σ̄ a1 + 4η̄a1 − 2a2

2a1
, (5.33)

which gives the final form of the solution to be

φ1 = sech(a1α̂)

16a2
1

[5λ1 − λ2 − 8λ1a1α̂ − 2λ1 exp(a1α̂) sech(a1α̂)

− (3λ1 − λ2) exp(−a1α̂) sech(a1α̂)]. (5.34)
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By the results in (5.22), (5.23), (5.25), (5.27) and (5.34), the full inner solutions to order ε in
the phase angle and to order ε2 in the scaled potential are, respectively,

φ = 2 tan−1(exp(a1α̂)) − π

2
+ ε

sech(a1α̂)

16a2
1

[5λ1 − λ2 − 8λ1a1α̂

− 2λ1 exp(a1α̂)sech(a1α̂) − (3λ1 − λ2) exp(−a1α̂) sech(a1α̂)], (5.35)

and

�̄ = εa1α̂ + ε2[a2α̂ − η̄a1α̂ + η̄ tanh(a1α̂)]. (5.36)

5.3. The composite solution

Now that solutions have been obtained for the outer and inner regions of the wedge, all that
remains is to combine them in some way to form a composite solution that is valid over the
entire domain (in this case we only need a solution over half the domain due to symmetry
arguments). This process is achieved using a standard matching method, where the outer
solutions are expanded in terms of the inner variable, while the inner solutions are expanded
in terms of the outer variable. These expansions are then truncated at a particular order and
both are written in terms of the outer variable. By equating them, any undetermined constants
can be found which then allows the full composite solution to be obtained.

Starting with the solutions for the scaled potential �̄ and by writing the outer solution
(5.13) (which will be denoted by �̄o) in terms of the inner variable α̂ (5.14) and expanding
up to order ε2 it is found that

�̄o ≈ (1 − 2b0) εα̂ + b0 − 2b1ε
2α̂ + b1ε + b2ε

2. (5.37)

Returning to the original outer variable ᾱ it is clear that

(�̄o)i = (1 − 2b0)ᾱ + b0 + ε(b1 − 2b1ᾱ) + b2ε
2, (5.38)

where the superscript i denotes that the outer solution has been expanded in terms of the inner
variable. Similarly, by writing the inner solution (5.36) (denoted by �̄i) in terms of the outer
variable ᾱ (5.14) and expanding up to order ε2 gives

(�̄i)o = a1ᾱ + (a2ᾱ − η̄a1ᾱ)ε + η̄ε2, (5.39)

where the superscript o denotes that the inner solution has been expanded in terms of the outer
variable. Now setting (�̄o)i = (�̄i)o and comparing coefficients of powers of ε and of ᾱ it is
straightforward to show that the integration constants are given by

a1 = 1, a2 = η̄, b0 = 0, b1 = 0, b2 = η̄. (5.40)

The form of the final composite solution is given via [20, p 95]

�̄ = �̄o + �̄i − (�̄o)i, (5.41)

which, upon inserting (5.13), (5.14), (5.36), (5.38) and (5.40), yields the solution

�̄ = ᾱ + ε2

[
η̄ tanh

(
ᾱ

ε

)
− 2η̄ᾱ

]
. (5.42)

The full solution for the phase angle φ can be found now that all the unknowns have been
obtained. Clearly, from equation (5.12), (φo)i = π

2 and so the composite solution simplifies
to

φ = φo + φi − (φo)i = φi. (5.43)
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Finally, from the scaling (5.14), the inner solution (5.35), the introduced parameters (5.31)
and the evaluated constants of integration (5.40), the full solution can be written in the form

φ = 2 tan−1

[
exp

(
ᾱ

ε

)]
− π

2
+

1

8
sech

(
ᾱ

ε

) [
(6σ̄ + 4η̄) ε − 4σ̄ ᾱ

− σ̄ ε exp

(
ᾱ

ε

)
sech

(
ᾱ

ε

)
− (5σ̄ + 4η̄) ε exp

(
− ᾱ

ε

)
sech

(
ᾱ

ε

)]
. (5.44)

In order to compare with the numerical work in Smith and Stewart [17], it is necessary
to convert these solutions so that they are in terms of the original variables α and �. From
(2.17) it is seen that

� =
[

α

β
+ ε2

(
η̄ tanh

(
α

βε

)
− 2η̄

α

β

)]
Vapp, (5.45)

and

φ = 2 tan−1

[
exp

(
α

βε

)]
− π

2
+

1

8
sech

(
α

βε

) [
(6σ̄ + 4η̄) ε − 4σ̄

α

β
− σ̄ ε exp

(
α

βε

)

× sech

(
α

βε

)
− (5σ̄ + 4η̄) ε exp

(
− α

βε

)
sech

(
α

βε

)]
, (5.46)

where ε = 1/U, σ̄ = σ/ε and η̄ = η/ε (see (5.1)). Once again, it is more useful to investigate
the behaviour of the electric field throughout the sample rather than the potential. Using
equation (2.10), a calculation shows that the electric field is given by

E = −α̂
Vapp

rβ

[
1 + η̄ε sech2

(
α

βε

)
− 2η̄ε2

]
, (5.47)

and, by normalizing with respect to the critical field (see equation (3.16)), this allows the
r-dependence to be eliminated to see that

E

Ec

= Vapp

Vc

[
1 + η̄ε sech2

(
α

βε

)
− 2η̄ε2

]
. (5.48)

Figures 6 to 10 show how the director and field vary across the wedge for a variety of
voltage ratios, permittivity values and elastic constants. The dashed curves are the solutions
to the asymptotic expansions (5.46) and (5.48) and, for comparison, the numerical solutions
obtained using the method outlined by Smith and Stewart [17] are given as solid curves. Unless
otherwise noted in the figure captions, the data used are taken to be those in (4.25).

From figure 6 it is reassuring to observe the high degree of accuracy obtained by the
asymptotic solutions for high voltage ratios. Even at twice the threshold value, the asymptotic
solution agrees well with the numerical results. Although the asymptotic expansions are
derived assuming σ and η to be of order ε, from figures 7–10 it is clear that, for physically
realistic values for the parameters ε‖, B1 and B2, the approximations provide good fits to the
numerical solutions.

6. Discussion

From previous work [7, 9, 10, 21, 22] it is already known that the SmC wedge geometry serves
as an important tool for obtaining information regarding the material properties of liquid
crystals. As a first approximation these articles assume that the field is uniform across the
cell which, although accurate for magnetic fields, is not necessarily a realistic representation
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(a) (b)

Figure 6. (a) Director behaviour and (b) field distortion across the SmC wedge for different
applied voltage ratios, with the dashed and solid curves representing the asymptotic and numerical
solutions, respectively. The parameter values are given by (4.25).

(a) (b)

(c) (d )

Figure 7. Director behaviour across the SmC wedge for different values of ε‖, with the dashed and
solid curves representing the asymptotic and numerical solutions, respectively. Here, Vapp/Vc = 3
while the remaining parameters are given by (4.25) with the exception that B1 = B2 = 5×10−12 N.

for electric fields. In order to provide a more accurate theoretical model to describe the
orientation pattern of the director in such a cell, we have allowed for a two-way interaction
between the material and an applied electric field. The analytical results obtained for various
limiting regimes are supported by numerical calculations and the work is consistent with
earlier research.
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(a) (b)

(c) (d )

Figure 8. Field distortion across the SmC wedge for different values of ε‖ when Vapp/Vc = 3,
with the dashed and solid curves representing the asymptotic and numerical solutions, respectively.
The remaining parameters are given by (4.25) with the exception that B1 = B2 = 5 × 10−12 N.

The current authors previously investigated some aspects of this problem [17] by
obtaining a set of three coupled integral equations which were valid for any values of the
material parameters and applied voltage. Unfortunately, their complexity forced the use
of cumbersome numerical methods which, although sufficient to describe the behaviour,
offered little information on the precise relationship between the director and field profiles
and the material and geometry parameters. The method adopted in this paper is vastly more
mathematically comprehensive and involves a rigorous analytical approach that culminates
in explicit expressions for the director orientation and field behaviour at low and high field
strengths (see equations (4.20), (4.23), (5.46) and (5.48)). Although only valid under certain
conditions, these expressions provide immediate and clear insight into the static behaviour.
Expressions such as these are not available when a numerical route is taken to the solution
and to the authors’ knowledge they are not to be found elsewhere in the literature. These
explicit solutions, which display the influence of the material parameters upon the field
behaviour, should be of great interest to anyone investigating post-threshold behaviour in the
SmC wedge geometry and may prove valuable in obtaining additional information about the
various material parameters.

From standard SmC continuum theory [2, 5–7], governing equations have been obtained
and then solved using asymptotic methods which gave rise to informative solutions under
several regimes. Under the assumption that the dielectric anisotropy is small, it has been
found that the model reduces to that developed by Atkin and Stewart [9] and thereby highlights
the area in which a uniform field approximation is valid. The region of most interest occurs
when the applied voltage is just above the threshold (up to Vapp/Vc ≈ 1.1). Under this
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(a) (b)

(c) (d )

Figure 9. Director behaviour across the SmC wedge for different values of B1 and B2 when
Vapp/Vc = 3, with the dashed and solid curves representing the asymptotic and numerical solutions,
respectively. The remaining parameters are given by (4.25) with the exception that ε‖ = 6.

condition, the director orientation pattern obtained can vary significantly and depends upon
the magnitude of the dielectric anisotropy. This variance in behaviour is caused entirely by the
field being influenced by the material and is absent in the uniform field model which predicts
that for a given value of Vapp/Vc the director orientation is independent of the dielectric
anisotropy. It should be remembered, of course, that the magnitude of the critical threshold
is still dependent upon the dielectric anisotropy. Within this regime the director orientation
takes on a standard half period sinusoidal solution (see equation (4.20)) with the magnitude
being explicitly determined by the perturbation parameter and the combination of material
and geometry parameters defined by λ (see equation (4.12)). Meanwhile, the electric field is
perturbed around a constant solution via a full period cosine function (see equation (4.23)).

Further asymptotic expansions were derived and gave rise to expressions for the director
and field behaviour at high voltages. It was found that these asymptotic solutions were valid
for Vapp/Vc � 2 and were in good agreement with the numerical solutions. In order to make
progress within this regime, conditions had to be imposed on the magnitudes of some of
the material parameters (σ and η were assumed to be of order ε). However, it was found
that these conditions were not that restrictive when supplying realistic data to the solutions.
When considering voltages that are much greater than threshold it was found that the director
orientation takes on a more complicated form (see equation (5.46)) involving a mixture of
trigonometric and exponential terms which accurately model the flattening of the profile and
steep director gradients near the boundaries. The corresponding field is modified from a
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(a) (b)

(c) (d )

Figure 10. Field distortion across the SmC wedge for different values of B1 and B2 when
Vapp/Vc = 3, with the dashed and solid curves representing the asymptotic and numerical solutions,
respectively. The remaining parameters are given by (4.25) with the exception that ε‖ = 6.

constant solution via a hyperbolic secant function (see equation (5.48)), the amount of which
is governed entirely by the perturbation parameter and η̄.

In summary, we have used standard asymptotic methods to obtain analytical results for
the Freedericksz transition in a wedge of SmC liquid crystal when the electric field exceeds
the Freedericksz threshold. The influence of material parameters upon the derived asymptotic
solutions has been investigated and revealed through the explicit forms for these solutions.
The general results agree favourably with earlier exploratory numerical solutions.
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